

Ciencias Plan Común FÍSICA

2009

Fuerza y movimiento I

Introducción:

La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza. Como cualquier otro material didáctico requiere de la mediación del profesor y de tu estudio sistemático.

Resolverás 20 ejercicios relacionados con los siguientes contenidos:

Leyes de Newton.

Estos contenidos los encontrarás en el capítulo 2 del libro ciencias plan común, desde la página 46 hasta la página 54.

Habilidades de la clase

- Conocimiento: conocer información explícita que no implica un mayor manejo de contenidos, se refiere al dominio conceptual de los contenidos
- **Comprensión:** además del reconocimiento explícito de la información, ésta debe ser relacionada para manejar el contenido evaluado.
- Aplicación: es el desarrollo práctico tangible de la información que permite aplicar los contenidos asimilados.
- Análisis: es la más compleja de las habilidades evaluadas. Implica reconocer, comprender, interpretar e inferir información a partir de datos que no necesariamente son de conocimiento directo.

Es fundamental que escuches atentamente la explicación de tu profesor, ya que la P.S.U. no es sólo dominio de **conocimientos**, sino también dominio de **habilidades.**

¿Cuáles son los conceptos fundamentales que debes aprender en esta clase?

Debes aprender a reconocer, las fuerzas y las Leves de Newton.

¿Qué es lo fundamental que debes aprender en esta clase?

Fuerza: Es el término usado para identificar la causa de los movimientos, de las aceleraciones, de las rupturas o de los cambios de forma que experimentan los cuerpos.

Según su origen, las fuerzas pueden calificarse en musculares, mecánicas, magnéticas, eléctricas y gravitacionales.

Las fuerzas magnéticas, eléctricas y gravitacionales se caracterizan por "actuar a distancia", dando origen a "campos de fuerza".

De acuerdo con el tiempo durante el cual se aplican o actúan, las fuerzas pueden clasificarse en instantáneas, si actúan durante un tiempo muy breve, y en continuas, si actúan durante todo el transcurso del fenómeno.

Finalmente, según su medida, pueden catalogarse de constantes, si la medida no cambia, y de variables, si cambia mientras ocurre el fenómeno.

Toda fuerza, por otra parte, es una magnitud vectorial y su unidad de medida es el Newton (N) en el S.I. y la Dina en el C.G.S.

Leyes de Newton

Primera ley de Inercia: "Todo objeto persiste en un estado de reposo, o de movimiento en línea recta con rapidez constante, a menos que se apliquen fuerzas que lo obliguen a cambiar dicho estado". Por ejemplo, un automóvil que se encuentra en reposo quiere seguir en ese estado, y una vez que éste adquiera movimiento tratará de seguir moviéndose.

Segunda ley del movimiento: "la aceleración que experimenta un cuerpo es directamente proporcional a la fuerza que la origina y tiene, por lo tanto, su misma dirección y sentido". Lo anterior se conoce como ley fundamental de la mecánica y se puede determinar por la expresión $F = m \cdot \vec{a}$. Por ejemplo, si se aplica una fuerza sobre un automóvil que se encuentra en reposo y que tiene cierta masa, y éste comienza a moverse, podemos decir que ha acelerado, es decir, ha cambiado su estado de movimiento.

Tercera ley de acción y reacción: "si un cuerpo ejerce una fuerza sobre otro, éste ejerce sobre el primero una fuerza en sentido contrario, de igual intensidad y que actúa sobre la misma recta de acción."

La primera fuerza se denomina acción y la segunda, reacción, siendo la denominación totalmente arbitraria. Por ejemplo, en la figura se ve a un hombre empujando un muro con una cierta fuerza, sin lograr mover el muro, de aquí se desprende que el muro desarrolla una fuerza igual, pero contraria a la fuerza del hombre. Las fuerzas de acción y reacción siempre actúan en cuerpos distintos

Física

Láminas Power Point

A continuación encontrarás las láminas correspondientes a la presentación Power Point que se desarrollará en la clase, de este modo podrás complementar tus apuntes de manera, más eficaz

LEYES DE NEWTON

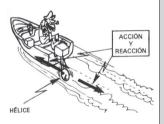
1a LEY (INERCIA)

Todo cuerpo permanece en su estado de reposo o de movimiento rectilíneo uniforme a menos que un agente externo (fuerza neta sobre él) lo sague de ese estado.

LEYES DE NEWTON

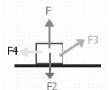
2ª LEY (FUNDAMENTAL DE LA DINÁMICA)

Si sobre un cuerpo actúa una fuerza neta, éste adquiere una aceleración que es directamente proporcional a dicha fuerza neta e inversamente proporcional a su masa.


 $\vec{F} = m \cdot \vec{a}$

Unidades para fuerza S.I.: Newton C.G.S.: Dina

PRINCIPIOS DE NEWTON


3ª LEY (ACCIÓN Y REACCIÓN)

Si un cuerpo A está ejerciendo una fuerza sobre un cuerpo B, entonces el cuerpo B ejerce una fuerza de igual módulo y dirección, pero de sentido opuesto sobre el cuerpo A.

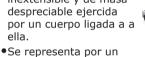
DIAGRAMA DE CUERPO LIBRE (DCL)

- Corresponde a la representación gráfica de las fuerzas que actúan sobre un cuerpo en estudio.
- Para resolver problemas utilizando DCL, se debe seguir los siguientes pasos:
- Hipótesis de movimiento.
- Dibujar las fuerzas sobre cada cuerpo (DCL).
- Plantear ∑F = m · a para cada eje, resolver ecuaciones e interpretar resultados.

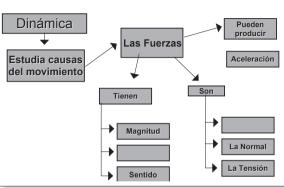
LA FUERZA PESO

- La masa es la medida de cuánta materia hay en un objeto.
- El peso es la medida de qué tanta fuerza ejerce la gravedad sobre un objeto.
- La fuerza peso siempre está dirigida hacia el suelo.
- $\bullet \vec{P} = m \cdot \vec{g}$

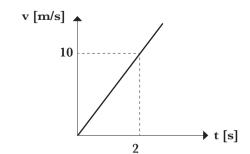
LA FUERZA NORMAL

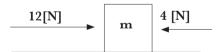

• La fuerza normal es una fuerza de reacción a la que ejerce un cuerpo al estar en contacto con una superficie.

• La fuerza normal siempre es perpendicular a la superficie de contacto v dirigida hacia fuera.

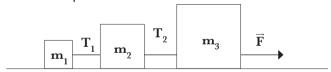

TENSIÓN

• Es la fuerza transmitida a través de una cuerda inextensible y de masa despreciable eiercida por un cuerpo ligada a a ella.


SÍNTESIS DE LA CLASE


Ejercicios

Para esta guía, considere $g = 10 \text{ [m/s}^2\text{]}$

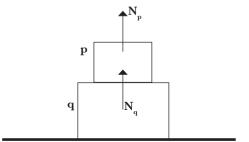

- 1. Un auto de 500 [kg] de masa, al ser empujado, se mueve sobre un plano horizontal como lo indica su gráfico v/t. ¿ Cuál será la fuerza neta que actúa sobre él ?
 - A) 0,5 [kN]
 - B) 1,0 [kN]
 - C) 2,0 [kN]
 - D) 2,5 [kN]
 - E) 3,5 [kN]

- 2. Si sobre una caja de 2 [kg] de masa, apoyada sobre una superficie lisa, actúan dos fuerzas horizontales, tal como indica la figura, ¿cuál es la aceleración de la caja?
 - A) $1 [m/s^2]$
 - B) $2 [m/s^2]$
 - C) 3 $[m/s^2]$
 - D) $4 \left[m/s^2 \right]$
 - E) $5 \left[\mathbf{m/s}^2 \right]$

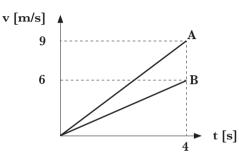
3. Tres bloques de masas $m_1 = 10[kg]$, $m_2 = 20[kg]$ y $m_3 = 30[kg]$ están unidos mediante cuerdas, sobre una superficie sin roce. Se aplica una fuerza horizontal \vec{F} de 60[N]. Al respecto se afirma que

- l) la aceleración del bloque de masa m_2 es 1 $[m/s^2]$.
- II) la tensión T, de la cuerda es 10 (N).
- III) la tensión T, de la cuerda es 30 (N).

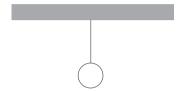
Es (o son) correcta(s)


- A) sólo I.
- B) sólo II.
- C) sólo III.
- D) sólo l y II.
- E) I, II y III.
- 4. Respecto de las fuerzas de acción y reacción, ¿cuál(es) de las siguientes proposiciones es (son) correctas?
 - I) La fuerza de acción actúa primero, inmediatamente después aparece la reacción.
 - II) Acción y reacción siempre actúan sobre cuerpos distintos.
 - III) Acción y reacción siempre actúan en distinta dirección.
 - A) Sólo I.
 - B) Sólo II.
 - C) Sólo III.
 - D) Sólo I y II.
 - E) Sólo I y III.

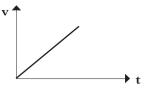
En el sistema horizontal de la figura, los cuerpos \mathbf{p} y \mathbf{q} tienen masas $\mathbf{m}_{\mathbf{p}}$ y $\mathbf{m}_{\mathbf{q}}$ 5. respectivamente. Analizando la fuerza normal que actúa sobre cada uno de estos cuerpos sería correcto afirmar que


II)
$$N_q = N_p$$

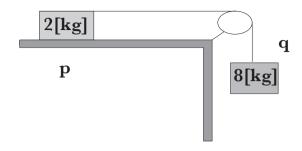
- $N_{q} = m_{q}g$ III)
- Sólo I. A)
- B) Sólo II.
- C) Sólo III.
- D) Sólo I y II.
- E) Sólo I y III.



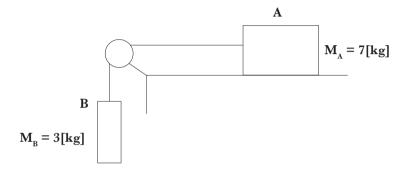
- 6. Para mover un televisor de 12 [kg] apoyado sobre un plano horizontal, se le aplica una fuerza horizontal constante que le comunica una aceleración neta de 0,4 [m/s²]. La fuerza ejercida sobre el televisor y la distancia que recorre en 5 [s] a partir del instante de aplicación de la fuerza son respectivamente.
 - 1,6 [N] y 1 [m] A)
 - 3,2 [N] y 3 [m] B)
 - C) 4,8 [N] y 5 [m]
 - 5,4 [N] y 7 [m] D)
 - E) 7,0 [N] y 9 [m]
- 7. Un cuerpo pesa 125 [N] en la superficie terrestre. ¿Cuál es la masa de dicho cuerpo?
 - A) 1250 [kg]
 - B) 125 [kg]
 - C) 12,5 [kg]
 - D) 1,25 [kg]
 - E) Otro valor


- 8. Un hombre de 70 [kg] se encuentra de pie sobre una pesa dentro de un ascensor. La pesa registra la fuerza ejercida sobre ella por cualquier objeto que se coloque encima. Es correcto afirmar que
 - l) la lectura de la pesa será de 826 [N] si el ascensor sube con una aceleración de 1.8 [m/s²].
 - ll) la lectura de la pesa será de 574 [N] si el ascensor baja con una aceleración de 1.8 [m/s²].
 - III) la lectura de la pesa siempre será la misma, independientemente de la aceleración del ascensor
 - A) Sólo I.
 - B) Sólo II.
 - C) Sólo III.
 - D) Sólo I y II.
 - E) Ninguna.
- 9. Para el problema anterior, determine la lectura de la pesa cuando baja aumentando su velocidad en 10[m/s] en cada segundo.
 - A) 0 [N]
 - B) 7⁻¹ [N]
 - C) 7 [N]
 - D) 70 [N]
 - E) 700 [N]
- 10. Si A y B son objetos que experimentan igual fuerza, determina la relación entre las masas $m_{_{A}}$: $m_{_{B}}$.
 - A) 1:3
 - B) 2:3
 - C) 3:3
 - D) 3:2
 - E) 3:1


- 11. Un astronauta viaja a un cuerpo celeste en que la aceleración de gravedad es la quinta parte que en la Tierra. Si en la Tierra tiene masa "m" y peso "p", en dicho planeta su masa y peso serán respectivamente:
 - A) m y p
 - B) 5m y 5p
 - C) my $\frac{\mathbf{p}}{5}$
 - D) $\frac{\mathbf{m}}{5}$ y p
 - E) $\frac{\mathbf{m}}{5}$ y $\frac{\mathbf{p}}{5}$
- 12. Un objeto de **m** = 12 [kg] está suspendido, tal como indica la figura. El módulo de la fuerza neta resultante sobre él es:
 - A) -120 [N]
 - B) -12 [N]
 - C) 0 [N]
 - D) 12 [N]
 - E) 120 [N]


- 13. Un cuerpo se mueve sobre una superficie sin roce, como indica el gráfico adjunto. Es correcto afirmar respecto a la fuerza neta que ésta
 - A) va aumentando
 - B) va disminuyendo
 - C) es constante
 - D) es nula
 - E) ninguna de las anteriores

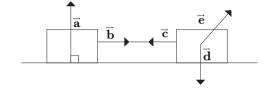
- 14. Determine la masa de un cuerpo sometido a un experimento físico, cuyos resultados se expresan en el gráfico adjunto. F(N)
 - A) 0,5 [kg]
 - B) 1 [kg]
 - C) 2 [kg]
 - D) 20 [kg]
 - E) 200 [kg]



15. Despreciando el roce, para la figura, es correcto afirmar que

- l) la fuerza normal sobre el bloque p, es 20 (N).
- II) la aceleración del bloque p, es 8 $[m/s^2]$.
- III) la tensión en la cuerda es 16 (N).
- A) Sólo I.
- B) Sólo II.
- C) Sólo III.
- D) Sólo II y III.
- E) I, II y III.

- 16. Un cuerpo de masa "m" se desliza sobre una mesa horizontal sin roce, con una aceleración constante "a". El módulo de la fuerza normal es _____ que el módulo del peso.
 - A) mayor.
 - B) mayor o igual.
 - C) igual.
 - D) menor.
 - E) menor o igual.
- De acuerdo con la figura adjunta y considerando que no hay fricción entre las superficies 17. en contacto, determine la aceleración del sistema.



- $1 \left[\mathbf{m/s^2} \right]$ A)
- $2 \left[\mathbf{m}/\mathbf{s}^2 \right]$ B)
- $3 [m/s^2]$ C)
- $4 [m/s^2]$ D)
- $5 [m/s^2]$ E)

- 18. Respecto a la pregunta anterior, suponiendo que existe espacio suficiente y tomando en cuenta la aceleración calculada anteriormente, ¿qué distancia recorrerá el cuerpo A en dos segundos, considerando que partió del reposo?
 - A) 4 [m]
 - B) 6 [m]
 - C) 8 [m]
 - D) 12 [m]
 - E) 14 [m]

 $\vec{\mathbf{a}}$

- 19. En el diagrama de la figura, la fuerza normal está representada por
 - A)
 - $\vec{\mathbf{b}}$
 - C) <u>c</u>
 - D) $\bar{\mathbf{d}}$

- 20. Al aplicar una fuerza de 200 [N] a un cuerpo, ésta produce una aceleración de 4[m/s²]. ¿Qué aceleración adquiere el cuerpo si se aplica además otra fuerza de 50[N] en sentido contrario a la anterior?
 - A) $2 [m/s^2]$
 - B) $3 [m/s^2]$
 - C) $5 [m/s^2]$
 - D) $8 \left[m/s^2 \right]$
 - E) $10 [m/s^2]$

Es importante que compruebes al final de cada sesión si realmente lograste entender cada contenido. Para esto, verifica tus respuestas (alternativa correcta y habilidad) y luego, revísalas con la ayuda de tu profesor.

Tabla de Especificaciones

Pregunta	Alternativa	Habilidad	
1		Comprensión	
2		Aplicación	
3		Aplicación	
4		Comprensión	
5		Análisis	
6		Aplicación	
7		Aplicación	
8		Análisis	
9		Análisis	
10		Comprensión	
11		Aplicación	
12		Comprensión	
13		Comprensión	
14		Comprensión	
15		Conocimiento	
16		Conocimiento	
17		Aplicación	
18		Aplicación	
19		Conocimiento	
20		Aplicación	

Física

Prepara tu próxima clase

Durante la próxima clase se revisarán los siguientes contenidos:

- Fuerza elástica.
- Fuerza de roce.

Comprende desde la página 55 hasta la página 61 de tu libro Cepech.

Mis notas							
	_						
	_						
	_						
	_						
	_						
	_						
	_						

Mis notas			

